AMORPHOUS-SILICON MODULE HOT-SPOT TESTING

JET PROPULSION LABORATORY

C. C. Gonzalez

Background

- Hot-spot heating occurs when ceil short-circuit current is lower than string operating current
 - Cell goes into reverse bias and absorbs power
 (= reverse-bias voltage x cell current)
 - Reverse-bias voltage is proportional to the number of cells in series with the affected cell
 - It is necessary to limit reverse-bias voltage by means of bypass diodes
- Nonuniform heating over cell area leads to increased temperature for same power dissipation

Visualization of Hot-Spot Cell Heating with High-Shunt Resistance Cell

Visualization of Hot-Spot Cell Heating with Low-Shunt Resistance Cell

Key Lessons from Crystalline Silicon

- Maximum allowable temperature for encapsulants: 120°C to 140°C
- Temperature very dependent on cell-to-cell shunt-resistance differences
- Lateral heat transfer from hot spot is important
- · Common failure at high heat levels is cell shorting
- Typical crystalline-silicon module requires bypass diades around every 12 to 18 cells
- Heating is highly non-linear function of applied current and voltage
 - Non-linear reverse I-V characteristic
 - Changing shunt-resistance with temperature
 - · Changing hot-spot area with temperature

Amorphous-Cell Hot-Spot Testing Objectives

- To develop the techniques required for performing reverse-bias testing of amorphous cells
- To quantify the response of amorphous cells to reverse biasing
- To develop guidelines for reducing hot-spot susceptibility of amorphous modules
- To develop a qualification test for hot-spot testing of amorphous modules

Approach

- Amorphous cells tested using two techniques
 - · First is equivalent to that used in hot-spot testing of crystalline cells
 - Hot-spot temperature monitored using IR camera
 - Reverse-bias I-V curve plotted as test is conducted
 - Second consists of pulsed reverse-bias voltage ranging in duration from 0.01 to 100 milliseconds
 - I-V curve plotted after each pulse

Amorphous-Cell Second-Quadrant I-V Curves

Amorphous-Module Cell-Reverse Quadrant I-V Curves Illuminated Cells

Amorphous-Module Cell-Reverse Quadrant I-V Curves Unilluminated Cells

(4)

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Fraction of Cells Reaching a Given Temperature as a Function of Power Dissipated (Modules)

Fraction of Cells Reaching a Given Temperature as a Function of Power Dissipated (Submodules)

Hot-Spot Temperature Versus Power for Cells in Encapsulated Module (Test Current Equal to 1, 2, and 2 + Cell I_{SC})

Hot-Spot Temperature Versus Power (Unencapsulated Amorphous-Silicon Submodules, No Illumination)

Hot-Spot Qualification Test

- Hot-spot qualification test performed on one module type
- Same procedure and equipment as for crystalline cells
 - 100-hour cyclic test
 - Treated as low-shunt-resistance cell (Type B)
 - Test performed in absence of illumination
 - Test current is module short-circuit current
 - Module temperature raised to field environment (45°C to 50°C)

Results and Conclusions

- Amorphous cells undergo hot-spot heating similarly to crystalline cells
 - Shunt resistance levels similar
 - Tolerance to heating level similar
- Comparison of results obtained with submodules versus actual module indicate heating level lower in latter
 - Module structure contains thick (relative to front surface) glass substrate not present in submodules
- Module design must address hot-spot heating
 - Heat-sinking cells
 - Use of bypass diodes
 - Use of smaller solar cells (lower maximum current)
- Hot-spot qualification test conducted on module
 - Module passed test with no instabilities
 - Minor cell erosion occurred that is characteristic of amorphous cells

ORIGINAL PAGE IS OF POOR QUALITY

Hot-Spot Test Set-Up

Test Set-Up for Submodule Using Conductive Elastomeric Material

Results of Hot-Spot Testing of Four Submodules

Close-up View of Hot-Spot Area

with the state of the state of

Front Side of Arco Test Module

Back Side of Arco Test Module Showing Added Conductive Ribbon Attached with Conductive Epoxy

ORIGINAL PAGE IS OF POOR QUALITY

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Close-up of Arco Test Module Showing Results of Hot-Spot Testing

Hot-Spot Recorded on IR Monitor Using Time-Lapse Photography

せ

MODULE DEVELOPMENT AND ENGINEERING SCIENCES

Ocilloscope Trace of Pulse-Reverse Bias Testing

A704 4 C	ue 13
+>5V	~500µS
•	•
,	•.
. 🔪	•
+ SOCHV	· \$
50 V	1× aune # 18

ORIGINAL PAGE IS OF POOR QUALITY